Nachweise Lastfall "Prognose-Zustand"

Regenüberlaufbecken RÜB 03 "Altensee" - DB N

Es gelten weitergehende Anforderungen gemäß Merkblatt LfU-4.4/22

1 Bemessungsgrunddaten

11	Direkteinzugsgebie	٠+
1.1	Direkteinzugsgebie	Jε

Undurchlässige Fläche	A_E,b	=	37,86 ha
Trockenwetterabfluss - Jahresmittel	Q_T,aM	=	5,70 l/s
Trockenwetterabfluss - Tagesspitze	Q_T,h,max	=	8,50 l/s
Regenabfluss aus Trenngebieten	Q_R,Tr	=	0,42 l/s

1.2 Gesamteinzugsgebiet

Undurchlässige Gesamtfläche	A_E,b	= = =	52,5 ha
Trockenwetterabfluss - Jahresmittel	Q_T,aM		7,33 l/s
Trockenwetterabfluss - Tagesspitze	Q_T,h,max		11,00 l/s
RÜB 01 "Grabenäcker"	Q_Dr,o,vorh	=	5 l/s
RÜB 02 "Weiherwiese"	Q_Dr,o,vorh	=	5 l/s
Oberhalb liegende Drosselabflüsse	ΣQ_Dr,o,vorh	=	10 l/s

1.3 Bemessungsabflüsse

Kritische Regenspende		r krit	=	30 l/s/ha
Kritischer Regenabfluss	Q_r , krit = A_E , $b \cdot r_k$ rit	Q_r,krit	=	1.136 l/s
Kritischer Mischwasserabfluss	$Q_{krit} = Q_{r,krit} + Q_{r,aM} \cdot \Sigma Q_{r,a}$	_Dr,cQ_krit	=	1.152 l/s
Drosselabfluss	, ,	Q_Dr	=	35 l/s
Abfluss über Klärüberlauf	$Q_K\ddot{U} = Q_krit - Q_Dr$	Q_KÜ	=	1.117 l/s
Regenspende 15;1		r15,1	=	113,3 l/s/ha
Zufluss bei Berechnungsregen der	Jährlichkeit 1	$Q_0(n=1)$	=	4.305 l/s
Abfluss am Beckenüberlauf	$Q_B\ddot{U} = Q_0 - Q_K\ddot{U} - Q_Dr$	Q_BÜ(n=1)	=	3.154 l/s
Regenspende 10;2		r10,2	=	175 l/s/ha
Zufluss bei Berechnungsregen der	Jährlichkeit 0,5	$Q_0(n=0,5)$	=	6.641 l/s
Abfluss am Beckenüberlauf	$Q_B\ddot{U} = Q_0 - Q_K\ddot{U} - Q_Dr$	Q_BÜ(n=0,5)	=	5.490 l/s
Maximal möglicher Zufluss:				_
- als Zufluss bei Berechnungsreger	n der Jährlichkeit 0,1	r10;0,1	=	258 l/s/ha
Maximal möglicher Zufluss aus EZ	G, Jährlichkeit 0,1	$Q_0(n=0,1)$	=	9.784 l/s
	$Q_B\ddot{U} = Q_0 - Q_K\ddot{U} - Q_Dr$	Q_BÜ(n=0,1)	=	8.632 l/s
- als maximaler Abfluss aus EEK-D	atei des Programmes MOMENT	Q_max	=	11.428 l/s
- maximaler Zufluss nach A166				21.856 l/s

1.4 Hochwasserspiegel

Wasserspiegel bei 10-jährlichem Bemessungshochwasser HQ10 HW10 = 302,95 m ü. NN

0,75 mm

2 Bauwerksdaten

2 1	711	lauf	kan	اد
Z. I	– 4 u	auı	Nali	a

Zulaufkanal			
Durchmesser Länge Sohle oben Sohle unten Gefälle betriebliche Rauhigkeit	DN L_Zu S_o S_u I_S,Zu kb	= = = = =	1400 mm 15,79 m 302,75 m ü. NN 302,71 m ü. NN 2,3 ‰ 0,75 mm
Lastfall kritischer Mischwasserabfluss Q krit			
Anteil Q_krit für statisches Kanalvolumen horizontale Fließgeschwindigkeit bei Q_krit,anteilig zulässige horizontale Fließgeschwindigkeit v_h < v_h,max> Nachweis erbracht	Q_krit,anteilig v_h v_h,max	= = = =	103 l/s 0,07 m/s 0,30 m/s
Trennbauwerk			
Schachtdeckel Trennbauwerk Sohle Gerinne Trennbauwerk oben Sohle Gerinne Trennbauwerk unten	D_TB S_TB,o S_TB,u	= =	306,15 m ü. NN 302,71 m ü. NN 302,32 m ü. NN
Profil Gerinne oben Profil Gerinne unten	DN_o DN_u	= =	1400 mm 300 mm
Länge Sohlgefälle Gerinne Trennbauwerk	L_TB I_S,TB	= =	12 m 32,7 ‰

2.3 Klärüberlauf

betriebliche Rauhigkeit

2.2

OK Schwelle Klärüberlauf	OK KÜ	=	303,54 m ü. NN
Anzahl KÜ-Felder	n	=	10 St
Länge pro KÜ-Feld	L_Feld, KÜ	=	0,45 m
Durchmesser Kembohrung	D_Kembohrung	=	0,60 m
Länge KÜ gesamt (Das Überlaufblech ist durchgezogen, Siehe Bauwerkplan)	L_KÜ	=	12,00 m

kb

2.4 Rechen Klärüberlauf

Oberkante Rechen	OK Rechen	=	303,93 m ü. NN
Beckendeckel	D_Becken	=	304,74 m ü. NN

2.5 Entlastungskanal Klärüberlauf

Durchmesser	DN	=	600 mm
Länge	L_Zu	=	22,1 m
Sohle oben	S_o	=	302,42 m ü. NN
Sohle unten	S_u	=	301,92 m ü. NN
Gefälle (über beide Haltungen ermittelt)	I_S,Zu	=	21,9 ‰
betriebliche Rauhigkeit	kb	=	0,75 mm

2.6 Beckenüberlauf

OK Schwelle Beckenüberlauf	OK BÜ	=	303,73 m ü. NN
Anzahl BÜ-Felder	n	=	1 St
Länge pro BÜ-Feld	L_Feld, BÜ	=	11,00 m
Länge BÜ gesamt	L_BÜ	=	11,00 m

2.7 Entlastungskanal Beckenüberlauf

Durchmesser	DN	=	1000 mm
Länge	L_Zu	=	14,36 m
Sohle oben	S_o	=	301,57 m ü. NN
Sohle unten	S_u	=	301,41 m ü. NN
Gefälle (über beide Haltungen ermittelt)	I_S,Zu	=	10,3 ‰
betriebliche Rauhigkeit	kb	=	0,75 mm

2.8 Drossel

MID 200

2.9 Ablaufkanal

Durchmesser	DN	=	300 mm
Länge	L_Zu	=	6,52 m
Sohle oben	S_o	=	302,41 m ü. NN
Sohle unten	S_u	=	302,34 m ü. NN
Gefälle (über beide Haltungen ermittelt)	I_S,Zu	=	10,9 ‰
betriebliche Rauhigkeit	kb	=	0,75 mm

3 Nachweise

3.1 Zulaufkanal

Lastfall Trocke	nwetterabfluss	Q_T ,	h,max
-----------------	----------------	---------	-------

Schleppspannung bei Q_T,h,max	Tau_Q_t,h,max	=	0,8 N/m ²
MindSchubspannung	Tau_min	=	1,0 N/m ²
Schleppspannung < 1,0 N/mm²> Nachweis nicht erbracht			

Lastfall kritischer Mischwasserabfluss Q_krit

horizontale Fließgeschwindigkeit bei Q_krit zulässige horizontale Fließgeschwindigkeit v_h > v_h,max> Nachweis nicht erbracht	v_h v_h,max	=	0,75 m/s 0,30 m/s
kritischer Mischwasserahfluss O krit anteilig	O krit anteilig	_	103 l/s

kritischer Mischwasserabfluss Q_krit, anteilig	Q_krit,anteilig	=	103 l/s
horizontale Fließgeschwindigkeit bei Q_krit,anteilig	v_h	=	0,07 m/s
zulässige horizontale Fließgeschwindigkeit	v_h,max	=	0,30 m/s
v h < v h max> Nachweis erbracht			

3.2 Trennbauwerk

Lastfall Drosselabfluss Q_Dr

Füllhöhe oben bei Q_Dr	t_Wsp,o	=	0,06 m
Wasserspiegel oben bei Q_Dr	Wsp,o (Q_Dr)	=	302,77 m ü. NN
OK Schwelle Beckenüberlauf Schwelle liegt über Wasserspiegel> Nachweis erbracht	OK BÜ	=	303,73 m ü. NN
Füllhöhe unten	t Wsn o		0.09 m

Fullnone unten	t_vvsp,o	=	0,09 m
Wasserspiegel unten bei Q_Dr	Wsp,u (Q_Dr)	=	302,41 m ü. NN
OK Schwelle Beckenüberlauf	OK BÜ	=	303,73 m ü. NN
Schwelle liegt über Wasserspiegel> Nachweis erbracht			

<u>Lastfall Berechnungsabfluss Q_0(n=0,5)</u>

Füllhöhe oben bei Q_Dr	t_Wsp,o	=	0,69 m
Wasserspiegel bei Q_0(n=0,5)	Wsp,o (n=0,5)	=	303,40 m ü. NN
Bemessungshochwasser BHW = HW10	HW10	=	302,95 m ü. NN
Wasserspiegel liegt über Bemessungshochwasser> Nachweis erbracht			

<u>Lastfall maximaler Abfluss Q_0,max</u>

Q_O,max >> Q_v des Zulaufkanals
> Nachweis für O voll

> Nacrivels ful Q_voii			
Wassertiefe oben bei Q_voll	t_Wsp,o	=	1,16 m
Wasserspiegel oben bei Q_voll	Wsp,o (n=0,1)	=	303,87 m ü. NN
Schachtdeckel Trennbauwerk	D_TB	=	306,15 m ü. NN

keine Gefährdung, da kein Überstau im Trennbauwerk

3.3 Klärüberlauf

Lastfall $Q_K\ddot{U} = Q_krit - Q_Dr$

Abfluss am Klärüberlauf Länge der Schwelle	Q_KÜ L	=	1.117 l/s 12,0 m
Spezifische Schwellenbelastung	q_KÜ	=	93 l/s/m
Zul. spezifische Schwellenbelastung große Schwellenbelastung> Nachweis nicht erbracht	zul q_KÜ	=	75 l/s/m
groupe service and account of the contract of			
OK Klärüberlauf	OK BÜ	=	303,54 m ü. NN
Überfallabminderungsbeiwert	C	=	1,0
Überfallformbeiwert	μ	=	0,6
Überfallhöhe	h_BÜ	=	0,14 m
Wasserspiegel bei Q_KÜ	Wsp (Q_KÜ)	=	303,68 m ü. NN
Bemessungshochwasser BHW = HW10 Wasserspiegel liegt über Bemessungshochwasser> Nachweis erbracht	HW10	=	302,95 m ü. NN
wasserspieger negt uber bernessungshochwasser> Nachweis erbracht			

3.4 Rechen Klärüberlauf

Lastfall Abfluss Beckenüberlauf bei 1-jährlichem Berechnungsregen

Abfluss am Beckenüberlauf r_15,1	Q_BÜ(n=1)	=	3.154 l/s
Länge des Rechens	L	=	12,0 m
Überfallabminderungsbeiwert	C	=	1,0
Überfallformbeiwert	μ	=	0,6
Überfallhöhe	h_BÜ	=	0,28 m
Wasserspiegel bei Q_0,max	Wsp,o (n=0,1)	=	304,21 m ü. NN
Beckendeckel	D_Becken	=	304,74 m ü. NN
Unschädlich Überströmung> Nachweis erbracht			

3.5 Entlastungskanal Klärüberlauf

<u>Lastfall maximaler Abfluss Q_0,max</u>

max Abfluss Entlastungskanal KÜ	Q_KÜ	=	1.117 l/s
Abfluss bei Vollfüllung Entlastungskanal KÜ	Q_v,BÜ	=	994 I/s
Abfluss bei Vollfüllung kleiner als O. KÜ> Nachweis nicht erbracht			

3.6 Beckenüberlauf

<u>Lastfall Berechnungsabfluss Q_0(n=1)</u>

,	Abfluss am Beckenüberlauf r_15,1	Q_BÜ(n=1)	=	3.154 l/s
I	Länge der Schwelle	L	=	11,0 m
	Spezifische Schwellenbelastung	q_BÜ	=	287 l/s/m
2	Zul. spezifische Schwellenbelastung		=	300 l/s/m
9	geringe Schwellenbelastung> Nachweis erbracht	zul q_BÜ		
(OK Beckenüberlauf	OK BÜ	=	303,73 m ü. NN
Į	Überfallhöhe (s. u. Pkt. 3.7)	h_BÜ	=	0,28 m
١	Wasserspiegel bei Berechnungsabfluss Q_0(n=1)	Wsp,o $(n=1)$	=	304,01 m ü. NN
E	Bemessungshochwasser BHW = HW10	HW10	=	302,95 m ü. NN
١	Wasserspiegel liegt über Bemessungshochwasser> Nachweis erbracht			

Wasserspiegei liegt über Bemessungshochwasser --> Nachweis erbra

<u>Lastfall maximaler Abfluss Q_0,max</u>

OK Beckenüberlauf	OK BÜ	=	303,73 m ü. NN
Abfluss am Beckenüberlauf	Q_0,max	=	21.856 l/s
Länge der Schwelle	L	=	11,0 m
Überfallabminderungsbeiwert	С	=	1,0
Überfallformbeiwert	μ	=	0,6
Überfallhöhe (s. u. Pkt. 3.7)	h_BÜ	=	1,08 m
Wasserspiegel bei Q_0,max = Q_0(n=0,1)	Wsp,o (n=0,1)	=	304,81 m ü. NN
Schachtdeckel Bauwerk BÜ	D_TB	=	306,15 m ü. NN
kaina Gafährdung da kain Üharstau im Trannhauwerk			

keine Gefährdung, da kein Überstau im Trennbauwerk

3.7 Entlastungskanal Beckenüberlauf

<u>Lastfall maximaler Abfluss Q_0,max</u>

max Abfluss Entlastungskanal BÜ	$Q_B\ddot{U} = Q_Bem - Q_Dr$	Q_BÜ(n=0,1)	=	21.856 l/s
Abfluss bei Vollfüllung Entlastungskanal BÜ		Q_v,BÜ	=	2.600 I/s
Abfluss bei Vollfüllung kleiner als max. Abfluss> Nachweis nicht erbracht				

3.8 Drosselorgan

Lastfall Drosselabfluss Q_Dr

Drosselorgan: MID 200			
gewählter Drosselabfluss	ΣQ_Dr	=	35 l/s
Mindestdurchfluss nach DWA-A 111	Q_Dr,B,min	=	10 l/s
Drosselabfluss größer als der Mindestabfluss für Drosselorgane>	Nachweis erbracht		

Rückstaufreiheit bei Q_T,h,max

Trockenwetterabfluss - Tagesspitze	Q_T,h,max	=	11,00 l/s
Trockertive tterabiliass ragesspitze	Q_1,11,111ax		11,00 113

Drosselorgan: MID Rückstaufreiheit gewährleistet

3.9 Ablaufkanal

Lastfall Q_T,h,max

Schleppspannung bei Q_T,h,max MindSchubspannung Schleppspannung > 1,0 N/mm²> Nachweis erbracht	Tau_Q_t,h,max Tau_min	=	4,0 N/m² 1,0 N/m²
Lastfall 1,5-facher Drosselabfluss			
1,5-facher Drosselabfluss Abfluss bei Vollfüllung Abfluss bei Vollfüllung größer als 1,5 x Q_Dr> Nachweis erbracht	1,5*Q_Dr Q_v,BÜ	=	53 l/s 113 l/s
<u>Lastfall Drosselabfluss</u>			
Drosselabfluss Abfluss rückstaufrei bei Q_Dr	1,5*Q_Dr	=	35 l/s
Vorhandene Nennweite Ablaufkanal Mindestnennweite Ablaufkanal Durchmesser des Ablaufkanals ausreichend groß	DN_vorh DN_min	=	300 mm 300 mm