Nachweise Lastfall "Prognose-Zustand"

Regenüberlaufbecken RÜB 02 "Weiherwiese" - FBN

Es gelten weitergehende Anforderungen gemäß Merkblatt LfU-4.4/22

1 Bemessungsgrunddaten

1 1	Direk	tainzu	acad	shipt
1.1	Direk	temzu	gsge	ebiet

Undurchlässige Fläche	A_E,b	=	9,13 ha
Trockenwetterabfluss - Jahresmittel	Q_T,aM	=	1,00 l/s
Trockenwetterabfluss - Tagesspitze	Q_T,h,max	=	1,51 l/s
Regenabfluss aus Trenngebieten	O R Tr	=	0.00 1/s

1.2 Gesamteinzugsgebiet

Undurchlässige Gesamtfläche	A_E,b	=	9,13 ha
Trockenwetterabfluss - Jahresmittel	Q_T,aM	=	1,00 l/s
Trockenwetterabfluss - Tagesspitze	Q_T,h,max	=	1,51 l/s

Oberhalb liegende Drosselabflüsse $\Sigma Q_Dr,o,vorh = 0$ l/s

1.3 Bemessungsabflüsse

Demessungsabnusse				
Kritische Regenspende		r_krit	=	30 l/s/ha
Kritischer Regenabfluss	$Q_r, krit = A_E, b \cdot r_krit$	Q_r,krit	=	274 l/s
Kritischer Mischwasserabfluss	$Q_{rit} = Q_{r,krit} + Q_{r,aM} \cdot \Sigma Q_{D}$	r,o Q_krit	=	275 l/s
Drosselabfluss		Q_Dr	=	5 l/s
Abfluss über Klärüberlauf	$Q_K\ddot{U} = Q_krit - Q_Dr$	Q_KÜ	=	270 l/s
Regenspende 15;1		r15,1	=	113,3 l/s/ha
Zufluss bei Berechnungsregen der J	ährlichkeit 1	$Q_0(n=1)$	=	1.035 l/s
Abfluss am Beckenüberlauf	$Q_B\ddot{U} = Q_0 - Q_Dr$	Q_BÜ(n=1)	=	1.030 l/s
Regenspende 10;2		r10,2	=	175 l/s/ha
Zufluss bei Berechnungsregen der J	ährlichkeit 0,5	$Q_0(n=0,5)$	=	1.599 l/s
Abfluss am Beckenüberlauf	$Q_B\ddot{U} = Q_0 - Q_Dr$	Q_BÜ(n=0,5)	=	1.594 l/s
Maximal möglicher Zufluss:				
- als Zufluss bei Berechnungsregen	der Jährlichkeit 0,1	r10;0,1	=	258 l/s/ha
Maximal möglicher Zufluss aus EZG	, Jährlichkeit 0,1	$Q_0(n=0,1)$	=	2.357 l/s
Abfluss am Beckenüberlauf	$Q_B\ddot{U} = Q_0 - Q_Dr$	Q_BÜ(n=0,1)	=	2.352 l/s
- als maximaler Abfluss aus EEK-Da	tei des Programmes MOMENT	Q_max	=	3.199 l/s
- maximaler Zufluss nach A166		O 0.max		4.684 l/s

1.4 Hochwasserspiegel

Wasserspiegel bei 10-jährlichem Bemessungshochwasser HQ10 HW10 = 308,47 m ü. NN

2 Bauwerksdaten

2.1	Zulaufkanal			
	Durchmesser Länge Sohle oben Sohle unten Gefälle betriebliche Rauhigkeit	DN L_Zu S_o S_u I_S,Zu kb	= = = = =	1000 mm 44,64 m 311,98 m ü. NN 311,82 m ü. NN 3,7 ‰ 0,75 mm
2.2	Trennbauwerk			
	Schachtdeckel Trennbauwerk Sohle Gerinne Trennbauwerk oben Sohle Gerinne Trennbauwerk unten	D_TB S_TB,o S_TB,u	= = =	313,74 m ü. NN 311,89 m ü. NN 311,88 m ü. NN
	Profil Gerinne oben Profil Gerinne unten	DN_o DN_u	=	1000 mm 200 mm
	Länge Sohlgefälle Gerinne Trennbauwerk	L_TB I_S,TB	= =	3,07 m 3,3 ‰
	betriebliche Rauhigkeit	kb	=	0,75 mm
2.3	Beckenüberlauf			
	OK Schwelle Beckenüberlauf Anzahl BÜ-Felder Länge pro BÜ-Feld Länge BÜ gesamt	OK BÜ n L_Feld, BÜ L_BÜ	= = = =	312,54 m ü. NN 1 St 5,01 m 5,01 m
2.4	Tauchwand			
	Horizontaler Abstand der Tauchwand von der Schwelle Unterkante Tauchwand Eintauchtiefe Länge	a_h,TW UK TW h_TW L_TW	= = =	0,30 m 312,18 m ü. NN 0,36 m 5,11 m
2.5	Entlastungskanal			
	Durchmesser Länge Sohle oben Sohle unten Gefälle (über beide Haltungen ermittelt) betriebliche Rauhigkeit	DN L_Zu S_o S_u I_S,Zu kb	= = = = =	800 mm 10,71 m 311,75 m ü. NN 311,68 m ü. NN 6,5 ‰ 0,75 mm
2.6	Drossel			
	MID 200	Q_Dr	=	5 l/s
2.7	Ablaufkanal			
	Durchmesser Länge Sohle oben Sohle unten	DN L_Zu S_o S_u	= = =	200 mm 5 m 311,88 m ü. NN

3 **Nachweise**

3.1 Zulaufkanal

Lastfall Trockenwetterabfluss Q_T,h,max

Schleppspannung bei Q_T,h,max $Tau_Q_t,h,max =$ 0,6 N/m² 1,0 N/m² Mind.-Schubspannung Tau_min

Schleppspannung < 1,0 N/mm² --> Nachweis nicht erbracht

Lastfall kritischer Mischwasserabfluss Q_krit

horizontale Fließgeschwindigkeit bei Q_krit v_h 0,35 m/s zulässige horizontale Fließgeschwindigkeit 0,30 m/s v_h,max v_h > v_h,max --> Nachweis nicht erbracht

3.2 Trennbauwerk

Lastfall Drosselabfluss Q_Dr

Füllhöhe oben bei Q_Dr t_Wsp,o 0,04 m Wasserspiegel oben bei Q_Dr Wsp,o (Q_Dr) = 311,93 m ü. NN OK Schwelle Beckenüberlauf OK BÜ 312,54 m ü. NN Schwelle liegt über Wasserspiegel --> Nachweis erbracht

Füllhöhe unten t_Wsp,o 0,07 m 311,95 m ü. NN Wasserspiegel unten bei Q_Dr Wsp,u $(Q_Dr) =$ 312,54 m ü. NN OK Schwelle Beckenüberlauf OK BÜ Schwelle liegt über Wasserspiegel --> Nachweis erbracht

Lastfall Berechnungsabfluss Q 0(n=1)

Füllhöhe oben bei Q_Dr t_Wsp,o 0.70 m Wasserspiegel bei Q_0(n=1) Wsp,o (n=0,5) =312,59 m ü. NN Bemessungshochwasser BHW = HW10HW10 308,47 m ü. NN

Wasserspiegel liegt über Bemessungshochwasser --> Nachweis erbracht

Lastfall maximaler Abfluss Q_0,max

Q_O,max >> Q_v des Zulaufkanals

--> Nachweis für Q_voll

Wassertiefe oben bei Q_voll 0,83 m t_Wsp,o Wsp,o (n=0,1) = 312,72 m ü. NN Wasserspiegel oben bei Q_voll Schachtdeckel Trennbauwerk D_TB 313,74 m ü. NN keine Gefährdung, da kein Überstau im Trennbauwerk

3.3 Beckenüberlauf

<u>Lastfall Berechnungsabfluss Q_0(n=1)</u>

Abfluss am Beckenüberlauf r_15,1 Länge der Schwelle Spezifische Schwellenbelastung Zul. spezifische Schwellenbelastung geringe Schwellenbelastung> Nachweis erbracht	Q_BÜ(n=1) L q_RÜ zul q_RÜ	= = =	1.030 l/s 5,01 m 206 l/s/m 300 l/s/m
OK Beckenüberlauf Überfallhöhe (s. u. Pkt. 3.7) Wasserspiegel bei Berechnungsabfluss Q_0(n=1) Bemessungshochwasser BHW = HW10 Wasserspiegel liegt über Bemessungshochwasser> Nachweis erbracht	OK BÜ h_BÜ Wsp,o (n=1) HW10	= = =	312,54 m ü. NN 0,24 m 312,78 m ü. NN 308,47 m ü. NN

Lastfall maximaler Abfluss Q_0,max

OK Beckenüberlauf	OK BÜ	=	312,54 m ü. NN
Abfluss am Beckenüberlauf	Q_0,max	=	4.684 l/s
Länge der Schwelle	L	=	5,0 m
Überfallabminderungsbeiwert	C	=	1,0
Überfallformbeiwert	μ	=	0,6
Überfallhöhe (s. u. Pkt. 3.7)	h_BÜ	=	0,65 m
Wasserspiegel bei $Q_0, max = Q_0(n=0,1)$	Wsp,o (n=0,1)	=	313,19 m ü. NN
Schachtdeckel Bauwerk BÜ	D_TB	=	313,74 m ü. NN
keine Gefährdung, da kein Überstau im Trennbauwerk			

3.4 Tauchwand Beckenüberlauf

Lastfall Abfluss Beckenüberlauf bei 1-jährlichem Berechnungsregen

Abfluss am Beckenüberlauf r_15,1 Länge der Schwelle Überfallabminderungsbeiwert Überfallformbeiwert Überfallhöhe	Q_BÜ(n=1) L c µ h_BÜ	= = = =	1.030 l/s 5,01 m 1,0 0,6 0,24 m
Horizontaler Abstand der Tauchwand von der Schwelle Horizontaler Mindestabstand Horizontaler Mindestabstand ≥ 2 x h_ü,BÜ Horizontaler Abstand nicht ausreichend> Nachweis nicht erbracht	a_h,TW a_h,min 2 x h_ü,BÜ	= = =	0,30 m 0,30 m 0,48 m
Eintauchtiefe der Tauchwand Mindesteintauchtiefe ≥ h_ü,BÜ Maximale Eintauchtiefe ≤ 2 x h_ü,BÜ Eintauchtiefe im zulässigen Bereich> Nachweis erbracht	t_TW t_TW,min t_TW,max	= = = =	0,36 m 0,24 m 0,48 m
Mindestabstand Sohle bis Unterkante Tauchwand Mindestabstand Sohle bis Unterkante Tauchwand ≥ 2 x h_ü,BÜ Ausseichender Abstand Sohle bis Unterkante Tauchwand > Nachweis	a_So,TW a_So,TW,min	= = =	1,93 m 0,48 m

3.5 Entlastungskanal

Lastfall maximaler Abfluss Q_0,max

max Abfluss Entlastungskanal BÜ Q_BÜ = Q_Bem - Q_Dr Q_BÜ(n=0,1) = $\frac{4.684}{1/s}$ Abfluss bei Vollfüllung Entlastungskanal BÜ Q_v,BÜ = $\frac{1.150}{1/s}$ Abfluss bei Vollfüllung kleiner als max. Abfluss --> Nachweis nicht erbracht

3.6 Drosselorgan

<u>Lastfall Drosselabfluss Q_Dr</u>

Rückstaufreiheit bei Q_T,h,max

Trockenwetterabfluss - Tagesspitze Q_T,h,max = 1,51 l/s
Drosselorgan: MID
Rückstaufreiheit gewährleistet

3.7 Ablaufkanal

Lastfall Q T,h,max

Schleppspannung bei Q_T,h,max	Tau_Q_t,h,max	=	1,4 N/m²
MindSchubspannung	Tau_min	=	1,0 N/m ²
Schleppspannung > 1,0 N/mm²> Nachweis erbracht			
Lastfall 1,5-facher Drosselabfluss			
1,5-facher Drosselabfluss	1,5*Q_Dr	=	8 l/s
Abfluss bei Vollfüllung	Q_v,BÜ	=	30 l/s
Abfluss bei Vollfüllung größer als 1,5 x Q_Dr> Nachweis erbracht			
<u>Lastfall Drosselabfluss</u>			
			=
Drosselabfluss	Q Dr	=	5 l/s

Abfluss rückstaufrei bei Q_Dr			
Vorhandene Nennweite Ablaufkanal	DN_vorh	=	200 mm
Mindestnennweite Ablaufkanal	DN_min	=	300 mm
Durchmesser des Ablaufkanals zu klein			