				*
* *	**DYNA*** (CPM) - Komplexes Parallelschrittverfahren	V14.0 Stand 2	022	*
Dá	atum und Uhrzeit der Berechnung	11.07.22	15:14:28	*
Ar	nwender		Anwender	*
Pı	rojekt	I	hre Firma	*
Вє	erechnungsvariante		Euler	*
Be	ezuqshöhensystem		mNN	*
		M-	d-11D	*
V €	erwendete Regen	MO	dellRegen	*
Ве	erechnungsgrundlagen:			*
Sc	chmutzwasseranfall (1/E*T)		130.00	*
Fi	remdwasserzuschlag in Prozent		0	*
Sr	pitzenanfall		14.00	*
	•	0) (1")) (1	,	*
Pá	auschale	Oberflächenabflussb	erecnnung	*
Ar	ngesetzte Anfangsfüllung Boden-/Muldenspeicher in %		0.00	*
Ar	ngesetzter Dauerverlust (enthält Verdunstung) in 1/s/	ha	0.40	*
Ak	bflusswirksamer durchlässiger Flächenanteil		1.00	*
Di	imensionierung M/S/R relativ Qv	0.9 /	0.9 / 0.9	*
ъ.	imanaianianan M/G/D min Dusfilla (mm)	200 /	200 / 300	*
	imensionierung M/S/R min. Profilhöhe (mm)		,	*
******	***************	*******	******	*****

DYNA (CPM) - Komplexes Parallelschrittverfahren V14.0 2022-01-26 Anwender 20.11.22 Ihre Firma

Ausgabe der Berechnungsgrundlagen

Niederschlagscharakteristik

Angesetzter Dauerverlust (enthält Verdunstung) VD = 0.4 1/(s*ha)

 Ent	Art der wässerungsfläche					_	 Anf/Endver- sickerung
1	(-)	1	(m)	(m**1/3)/s	1	(mm)	(1/(s*ha))
 Bef	estigte Fläche	 	35.0	 70.0	 	1.0	
Dur	rchlässige Fläche	 	50.0	4.0	 	1.0	

DYNA (CPM) - Komplexes Parallelschrittverfahren V14.0 Anwender Ihre Firma

Ausgabe der Berechnungsgrundlagen – vorhandene Modellregen: Anzahl der angesetzten Modellregen: 1 In der Berechnung tatsächlich verwendete Modellregen s. u. Berechnungsparameter Stationsnummer: 1 Station: 1 von insgesamt 1

Stand 2022-01-26 20.07.22

	Regen- stufe	i	N = 0	20.	80.0 min	İ	N = dT =	0	0.0 min	N dT	= =	0.	00 mm 0.0 min	dT =	0	.00 mm	Modell N = dT = eDaue	0	.00 mm 0.0 min	i I
I	(-)	ı	(min)	I	1/(s*ha)	(min)	I	l/(s*ha)	(m	in)	ı	l/(s*ha)	(min)	I	l/(s*ha)	(min)	I	1/(s*ha)	I
1	1	1	5.0		139.0	1	0.0	1	I		0.0	1	1	0.0)	1	0.0)		ı
	2		10.0		274.7		0.0				0.0	-	1	0.0			0.0)	1	
- 1	3		15.0		94.3	- 1	0.0		1		0.0	1	1	0.0			0.0)		
- 1	4		20.0		69.7	- 1	0.0		1		0.0	1	1	0.0			0.0)		
	5	1	25.0		54.7	- 1	0.0	-	1		0.0	1	1	0.0		1	0.0)		L
Ĺ	6		30.0	ĺ	44.7	İ	0.0	Ī	ĺ		0.0	1	İ	0.0	į į	İ	0.0)		ı
-		-				-1		-	I			1	1		-	I			I	l

Stand 2022-01-26 20.07.22

Ausgabe der Berechnungsgrundlagen des Kanalnetzes

Zusammenfassung der Eingabedaten

Ausgabe der Berechnungsgrundlagen in Abhängigkeit vom Entwässerungsverfahren Ohne Aussengebiete und übernommene Flutkurven (Bauwerkstyp 80 bzw. 81 s. o.)

 Entwässerungsverfahren 		 		Schmutzwas- serkanal	 Regenwas- serkanal 	 Gesamt
Anzahl der Haltungen Zentrierte Gesamtlänge aller Haltu Gesamtes zentriertes Haltungsvolum Einwohnerzahl Gesamteinzugsfläche Gesamte befestigte Fläche Mittlerer Befestigungsgrad	ingen nen [[[-] [m] [m ³] [-] [ha] [ha]		2 22 1.6 0.112 0.058	278 50.8 0.659	301 52.4 52.7 0.771 0.294
 Gesamtes Häusliches Abwasser QH Gesamtes Gewerbliches Abwasser QG Gesamtes Fremdwasser QF	über AE [l über AE [l über AE [l	l/s]			 - -	
Gesamtes Schmutzwasser QS=QH+QG Trockenwetterabfluss QT=QS+QF	über AE [l über AE [l				 	
 Gesamtes Häusliches Abwasser QH Gesamtes Gewerbliches Abwasser QG Gesamtes Fremdwasser QF	punktuell [l punktuell [l punktuell [l	l/s]			 	
Schmutzwasser gesamt QS=QH+QG+QSp Trockenwetterabfluss QT=QS+QF+QTp					 	
 Gesamtes Häusliches Abwasser QH Gesamtes Gewerbliches Abwasser QG Gesamtes Fremdwasser QF	gesamt [l gesamt [l gesamt [l	l/s]		 - -	 	
Gesamtes Schmutzwasser QS=QH+QG Trockenwetterabfluss QT=QS+QF 	gesamt [l				 	
Gesamtsummenwerte mit Außengebieten Anzahl der Sonderbauwerke	(Typ 81) und	übern	ommenen Flutkı	urven (Typ 80)		0

Anzani der Sonderbauwerke	0
Einwohnerzahl	0
Gesamteinzugsfläche	0.771 ha
Gesamte befestigte Fläche	0.294 ha
Gesamte durchlässige Fläche	0.477 ha
Mittlerer Befestigungsgrad	0.3579
Gesamtes Häusliches Abwasser QH	0.00 l/s
Gesamtes Gewerbliches Abwasser QG	0.00 l/s
Gesamtes Fremdwasser QF	0.00 l/s
Schmutzwasserabfluss direkt QSp	0.00 l/s
Schmutzwasser gesamt QS=QH+QG+QSp	0.00 l/s
Trockenwetterabfluss direkt QTp	0.00 l/s
Trockenwetterabfluss QT=QS+QF+QTp	0.00 l/s

DYNA (CPM) - Komplexes Parallelschrittverfahren	V14.0 Stand	1 2022-01-26
Hydrodynamische Kanalnetzberechnung: Ko	mplexes Parallelschr	rittverfahren
Datum und Uhrzeit der Berechnung	20.07.2	22 15:14:28
Nr. Erster Regen	(ANFA)	1
NR. Letzter Regen	(ENDE)	1
Strassenfläche in m²	(STRA)	100.0
Grundfläche Standardschacht in m²	(GRUN)	0.7850
Spaltbreite Vollfüllung in % PH	(SPAL)	5.0
Ausgabezeitschritt in Min	(TDEL)	1.00
Maximaler Wegschritt (DELTA X) in m	(XDEL)	150.00
Begrenzung Volumenänderung in %	(VDEL)	15.00
Genauigkeit der Flutkurven	(GENA)	0.000001000
Minimale Simulationszeit in Min	(MINI)	15
Regentrennzeit in Min	(TRMX)	300
Trockenperiode vor Regenbeginn in Min	(TROC(1))	30

 Verfügbares peripheres Haltungsvolumen :
 49.63 [m³]

 Verfügbares Schachtvolumen :
 29.69 [m³]

 Verfügbares Bauwerksvolumen :
 0.00 [m³]

 Verbrauchtes Anfangsvolumen (Netzmulden) :
 0.00 [m³]

DYNA (CPM) - Komplexes Parallelschrittverfahren V14.0 Anwender Ihre Firma

Stand 2022-01-26 20.07.22

Zusammenfassung der berechneten Volumina und Mengen

Prozentsatz zur Berechnung von Au aus undurchlässigen Flächenteilen: 0.0 % Gesamt: 42.9 m³ 0.0 m³

****DYNA*** (CPM) - Komplexes Parallelschrittverfahren V14.0 Stand 2022-01-26
Anwender 20.07.22
Thre Firma

Ausgabe der Kanaldaten - Erläuterung der in den Listen verwendeten Abkürzungen

|Spalte| Abkürzung | Bedeutung der Abkürzung Verf. | Entwässerungsverfahren : M = Mischwasserkanal R = Regenwasserkanal S = Schmutzwasserkanal Haltungstyp : Leer - Vorhanden ; P - Geplant ; F - Fiktiv summierte Haltungslänge entsprechend den max. Fliesszeiten 5 Längen 12 ΑE Gesamtfläche des Teileinzugsgebietes (in ha) Anteil der befestigten Flächen (in %) 1.3 BF Mittlere Neigung des Einzugsgebietes. Dabei bedeuten: FL - bis 1 % -Flach , HG - von 1 bis 4 % -Hügelig ST - von 4 bis 10 % -Steil , SS - über 10 % -Sehr steil 15 FL.AE Fliesslängenrelevanter Flächenanteil (-) 16 AF. Gesamtfläche aller oberhalb liegenden Einzugsgebiete (in ha) ARED 17 Gesamte befestigte Fläche aller oberhalb liegenden Einzugsgebiete 20 Profilschlüssel Betriebsrauigkeit (in mm) nach Prandtl-Colebrook Punktueller Zufluss (in 1/s). Dabei bedeuten: QG - Gewerbliches und industrielles Schmutzwasser, QF - Fremdwasser, QH - Häusliches Schmutzwasser, 2.3 KB Konst.Zufl. 24 QS - Ges. Schmutzwasser, QT - Trockenwetterabfluss, QR- Regenabfluss|
Grösse des punktuellen Zuflusses (in 1/s) |
Siedlungsdichte (E/ha; Standardwert 1ha) bzw. Einwohner E absolut | 25 26 I D Häuslicher Schmutzwasserabfluss | QH 28 QG Gewerblicher und industrieller Schmutzwasserabfluss 29 OF Fremdwasserabfluss QS 30 Gesamter Schmutzwasserabfluss aller oberhalb liegen. Einzugsgebiete Trockenwetterabfluss (QS + QF) aller oberhalb liegen. Einzugsgebiete Haltungswinkel (Argument) im Bogenmaß 31 Winkel Phi 32 max QR ges.| Maximaler Regenabfluss (in 1/s) Nummer des massgebenden Regens für QR (1 BIS 9999) Fliesslänge in m auf dem befestigten Flächenanteil 34 Regen Nr 35 LB Fliesslänge in m auf dem durchlässigen Flächenanteil Maximaler Mischwasser-/Gesamt-Abfluss (in 1/s)
Zeitpunkt des Auftretens von max.QM (in min)
Vorhandenes Sohlgefälle (in Promill,optional % bzw. 1/n) 39 max.QM ges.| 40 Zeit IS vorhand. 43 ΟV 44 VV Belastungsgrad der Einzelhaltung in % von QV (Sp. 43) 45 Erforderliche Profilhöhe, um den max. Mischwasserabfluss (SP.39) beim vorhandenen Gefälle ohne Rückstau abzuführen (in mm) 46 Erf. PH 47 VT ${\tt Fliessgeschwindigkeit\ beim\ Trockenwetterabfluss\ (in\ m/s)}$ 48 Normalwasserstand beim Trockenwetterabfluss (in cm) Geschwindigkeit von QM bei Normalwasserspiegel (in m/s) HT 49 VM Füllhöhe beim Normalwasserspiegel (in cm) 50 НМ I FL. ZU. Flieszustand in der betrachteten Haltung. Dabei bedeuten: Froudezahl > 1: Schiessen, Froudezahl < 1: Strömen 51 52 IP Erf. Erforderliches Druckgefälle, um den max. Mischwasserabfluss (SP.39) beim vorh. Kanalquerschnitt ohne Rückstau abzuführen (in Promill, optional $\$ bzw. 1/n)Erforderliche Druckhöhe, aus dem erf. Druckgefälle (SP.52) bezogen auf Rohrscheitel (in cm) : + Überlastung - keine Überlastung Maximale Wasserspiegellage am Haltungsanfang bzw. am Haltungsende 53 Delta HP 54,55| Anfang, Ende| zum Zeitpunkt des maximal beanspruchten Volumens der Haltung Ausgabe relativ zur Deckelhöhe (in cm) Ausgabe als absolute Höhe (in mNN) UOK. URS. Ausgabe relativ zum Rohrscheitel (in cm) | Stau | Ausg. der max. beanspr. Stauraumvolumina (in m³) | Abs. Mitte | auf Haltungssohle Mitte bezogene maximale Wasserspiegellage (in m)

DYNA (CPM) - Komplexes Parallelschrittverfahren $\,$ V14.0 Anwender $\,$ Ihre Firma

Stand 2022-01-26 20.07.22

Ausgabe der Kanaldaten - Liste 1

Hydrodynamische Kanalnetzberechnung: Komplexes Parallelschrittverfahren

		Straße bzw. Lagebezeichnung													sgebiet ARED
(Nr)	(Nr)	(-)	(-)	(m)	(m)	(mNN)	(mNN)	(mNN)	(mNN)	(ha)	(%) (-)	(1)	(ha)	(ha)
1	2	3	4 5	6	7	8	9	10	11	12	13	14	15	16	17
	ı					1				I			I	. ,	
_													Knoter		Wneu_10
3	1			16.04		335.379									0.02
3	3			3.10		333.930						/ F.T	0.12	0.11	0.05
3	5			17.79		333.933					. 1		!		
3	7	***	S P		42	333.794	330.4003	333.758	330.030	I			.	F /D-	
3	9	*** Zu		** 3.8/3	110	1333.758	222 222	221 650	200 000				Knoten		Wneu_50
3			R P R P			1333.758					16 2	3 FL	5./5	0.55	
3	11 13		IRP			1331.650							!	0.55	
3	15 I		IRP			331.550									
3	17		IRP			1332.671									
3	19		IRP			1331.600					. 1 2	Э ГЦ	1.00	0.66	
3	21			1 34.28		1331.500								0.66	
3	23		IRP			1330.700								0.66	
Auslaufbau			1 10 1	27.55	233	1550.700	320.3000	,51.150	320.730	1				noten	1/1101
nasiaarbaa.	WCIK IYP	50											101	100011	1/1101
													Kr	noten	3/1122
3.7	1 1	or. Rolf-Filler-Str	a R	28.84	29	1332.020	330.4913	333.550	330.428	1 0.0	8 4	8 FL	1.04	0.08	0.04
>			*** Abf	luss ***	3.8/1								Kr	noten	2/1121
	1														
		*** Zu	fluss *	** 3.7/1									Kn	noten	2/1121
3.8	1 1	Or. Rolf-Filler-Str	a R	47.44	76	333.550	330.4383	333.800	330.046	1 0.2	8 3	6 FL	0.90	0.36	0.14
3.8	3		R P	4.30	81	333.800	330.0503	333.758	330.030	0.0	2 2	3 FL	1.09	0.38	0.14
>			*** Abf	luss ***	3/9								Knoten	n 5/RI	Wneu_50
	1														

DYNA (CPM) - Komplexes Parallelschrittverfahren V14.0 Anwender Ihre Firma

Ausgabe der Kanaldaten - Liste 2

Hydrodynamische Kanalnetzberechnung: Komplexes Parallelschrittverfahren

Stand 2022-01-26

20.07.22

| Kanal- und Hal- | Profildaten KB/ |Konst.Zufl| TWA pro Einzelfläche | Aufsummiert |Winkel| max. Regen| Fliesslängen | tungsnummer | KZ Breite/Höhe KST | Art GR. | D QH QG QF | QS QT | Phi |QR ges. Nr. | LB LD | s) (1/s) | Bgm. | (1/s) (Nr) | (m) (Nr) | (-) (mm) (mm) | (-) (1/s) | E/ha (1/s) (1/s) (1/s) | (1/s)19 | 20 21 22 23 | 24 25 | 26 27 28 29 | 30 31 | 32 | 33 34 | 35 36 | 1 - 1 -1 1 Knoten 4/RWneu_10 4.5 1| 18.3 21.2 13.8 1| 13.3 21.1 0.75 | 0.75 | 0.75 | 1 | 00 1600 | 1.27 | 300 300 300 | 2.19 | 3 | 00 5 | 00 | 2.99 | 3 0.75 | | *** Zufluss *** 3.8/3 | 1.98 | 5/RWneu_50 Knoten 5/RWneu_50 51.4 1| 29.8 29.8 51.4 1| 51.7 1| 51.8 1| 57.4 1| 23.0 23.0 57.3 1| 56.5 1| Knoten 300 0.75 | 3 9 | 00 | 1.07 | 11 | 00 13 | 00 3 300 | 0.40 | |-0.23 | 0.75 300 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 15 | 00 300 | 0.61 | 17 | 00 300 | 1.34 | 300 19 | 00 | 0.16 | 21 | 00 23 | 00 300 300 1 0.06 1 Knoten 1/1101 Auslaufbauwerk Typ 90 |-1.55 | Knoten 3/1122 |-1.55 | 9.9 1| 20.1 20.5 | Knoten 2/1121 0.75 | | | *** Abfluss *** 3.8/1 1 | 00 1 | Knoten 2/1121 |-0.15 | 34.2 1| 30.4 31.0 | 1.03 | 34.8 1| 12.2 12.2 | Knoten 5/RWneu_50 *** Zufluss *** 3.7/1 3.8 3.8 *** Abfluss *** 3/9 1

DYNA (CPM) - Komplexes Parallelschrittverfahren V14.0

Anwender Ihre Firma

Ausgabe der Kanaldaten - Liste 3

Hydrodynamische Kanalnetzberechnung: Komplexes Parallelschrittverfahren

Stand 2022-01-26

20.07.22

anal- und Hal- | max. Zeit- |Profil- IS Volleistung Bel. Erf. |TR.Wetter|Mischwasser FL. IP Delta-| Wasserspiegel ABS.| tungsnummer | QM ges. Punkt | Höhe vorh. QV VV Grad PH | VT HT | VM HM ZU. Erf. HP | Anfang Ende Mitte| $(Nr) \;\;|\;\; (1/s) \;\;\; (min) \;\;|\;\; (mm) \;\; (\%) \;\;\; (1/s) \;\; (m/s) \;\; (\%) \;\;\; (mm) \;\;|\; (m/s) \;\; (cm) \;\; (m/s) \;\; (cm) \;\; (\%) \;\;\; (cm) \;\; (mNN) \;\;\; (mNN) \;\; 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | - 1 - 1 40 | 1600 25.00 13857 6.9 | 40 | 300145.00 413 5.8 3 | 40 | 300 2.81 57 0.8 24 | 40 | 300 80.44 307 4.3 4 | Knoten 4/RWneu_10 | 0.65 3 2.1 | 1.23 6 6.1 | 0.86 8 2.0 | 0.45 13 3.4 -40 | 331.30 | 330.94 | 0.02 | 0.18 | -45 | 330.88 | 330.56 | 0.06 | 0.18 | -5 | 330.52 | 330.47 | 0.07 | 0.18 | -37 | 330.40 | 330.18 | 0.08 | 1 1 | 4.5 4.5 3 | 13.8 5 | 13.8 7 | 13.8 3 *** Zufluss *** 3.8/3 Knoten 5/RWneu 50 *** Zufluss *** 3.8/3
40| 300 7.10 91 1.3
41| 300 7.16 91 1.3
41| 300 6.87 89 1.3
41| 300 6.86 89 1.3
41| 300 6.89 89 1.3
41| 300 6.92 90 1.3
41| 300 7.00 90 1.3
42| 300 6.80 89 1.3 9 | 51.4 11 | 51.4 13 | 51.7 15 | 51.8 17 | 57.4 | 1.32 16 1.2 | 1.35 16 1.1 | 1.28 17 1.1 | 1.21 18 1.0 2.32 -15 |330.18 329.96 0.16 3 57 2.31 -2 | 329.96 329.93 0.16 2.34 -13 | 329.93 329.75 0.17 2.35 -5 | 329.75 329.68 0.17 2.88 -6 | 329.68 329.57 0.18 2.87 -10 | 329.57 329.40 0.18 56 58 1.31 18 1.0 64 19 | 21 | 23 | 57.3 64 2.79 -14 |329.40 329.15 0.17 2.73 -11 |329.16 328.96 0.17 1.28 18 1.1 55.9 63 Auslaufbauwerk Typ 90 Knoten 1/1101 3/1122 Knoten 3/1122 40| 300 2.18 50 0.7 20 | | 0.45 10 0.5 0.10 -6 |330.56 330.53 0.09 *** Abfluss *** 3.8/1 Knoten 1 | 9.9 - 1 *** Zufluss *** 3.7/1 34.2 40| 300 8.26 98 1.4 35 | | 0.94 15 1.1 1.04 -34 |330.53 330.20 0.12 34.8 41| 300 4.65 73 1.0 48 | | 1.02 15 0.9 1.08 -2 |330.20 330.18 0.15 3.8 1 | 3 | *** Abfluss *** 3/9 Knoten 5/RWneu_50