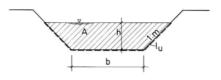
Markt Heroldsberg


Gründlach

Hydraulischer Nachweis - Wasserspiegelberechnung

.....

Bauwerk: SKO 4.1 (RÜB 904)

Lastfall: Entlastung bei Modelrregen T = 1 Jahr Querschnitt: Trapez mit unterschiedlichen Neigungen

Anlage 9.1.7

gegeben:

Abfluss MW-Entlastung	QEnt =	4,66	m³/s
Normalabfluss	MQ =	0,05	m³/s
Abfluss im Gewässerabschnitt	Q =	4,71	m³/s
Neigung 1 1: m	m1 =	1,21	
Neigung 2	m2 =	2,42	
mittlere Böschungsneigung	m =	1,82	
Sohlenbreite	b =	1,54	m
Mannig-Strickler-Beiwert	$k_{St} =$	35	m ^{1/3} /s
Sohlengefälle	$J_S =$	10,6	‰ =

gesucht: Sohlschubspannung

bei vorgegebenem Abfluß Q = 4,71 m³/s

Berechnung:

Fließtiefe:	le le	0.75
riiebliele.		0.75 m

$A = h \times (b + h \times (m_1 + m_2)/2)$		
$A = 0.751 \times (1.54 + 0.751 \times (1.21 + 2.42) / 2) =$	2,180	m²
lu = b + h x (WURZEL(1+m12) + WURZEL(1+m22))	4,69	m
rhy = A/U = 2,180201815 / 4,69 =	0,465	m
$v = k_{St} * rhy^{2/3} * Js^{1/2} =$		
v = 35 * 0,465^2/3 * 0,0106^1/2 =	2,16	m/s
Q = v * A		
Q = 2,16 m/s * 2,180201815 m2 =	4,71	m³/s

 τ Sohle = 48,4 N/m²